
Semiparametric Regression Pursuit

Jian Huang1, Fengrong Wei2 and Shuangge Ma3

1Department of Statistics and Actuarial Science, and Department of Biostatistics, Uni-

versity of Iowa, Iowa City, Iowa 52242, USA

2Department of Mathematics, University of West Georgia, Carrollton, Georgia 30118,

USA

3Division of Biostatistics, Department of Epidemiology and Public Health, Yale Uni-

versity, New Haven, Connecticut 06520, USA

November 2010

The University of Iowa

Department of Statistics and Actuarial Science

Technical Report No. 405

1



Summary. The semiparametric partially linear model allows flexible modeling of covariate

effects on the response variable in regression. It combines the flexibility of nonparametric

regression and parsimony of linear regression. The most important assumption in the exist-

ing approaches for the estimation in this model is to assume a priori that it is known which

covariates have a linear effect and which do not. However, in applied work, this is rarely

known in advance. We consider the problem of estimation in the partially linear models

without assuming a priori which covariates have linear effects. We propose a semiparamet-

ric model pursuit method for identifying the covariates with a linear effect. Our proposed

method is a penalized regression approach using a group minimax concave penalty. Under

suitable conditions we show that the proposed approach is model-pursuit consistent, meaning

that it can correctly determine which covariates have a linear effect and which do not with

high probability. The performance of the proposed method is evaluated using simulation

studies, which support our theoretical results. A real data example is used to illustrated the

application of the proposed method.
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1. Introduction Suppose we have a random sample (yi, xi1, . . . , xip), 1 ≤ i ≤ n,

where yi is the response variable and (xi1, . . . , xip) is a p-dimensional covariate vector.

Consider the semiparametric partially linear model

yi = µ+
∑
j∈S1

βjxij +
∑
j∈S2

f(xij) + εi, 1 ≤ i ≤ n, (1)

where S1 and S2 are mutually exclusive and complementary subsets of {1, . . . , p},

{βj : j ∈ S1} are regression coefficients of the covariates with indices in S1, and

(fj : j ∈ S2) are unknown functions. In this model, the mean response is linearly

related to the covariates in S1, while its relation with the remaining covariates is not

specified up to any finite number of parameters. This model combines the flexibility

of nonparametric regression and parsimony of linear regression. When the relation

between yi and {xij : j ∈ S1} is of main interest and can be approximated by a linear

function, it offers more interpretability than a purely nonparametric additive model.

There is a large literature on the estimation in partially linear models. Examples

include the partial spline estimator (Wahba 1984; Engle, Granger, Rice and Weiss 1986

and Heckman 1986) and the partial residual estimator (Robinson 1988, Speckman 1988)

and polynomial spline estimator (Chen 1988). An excellent discussion of partially linear

models can be found in the book by Härdle, Liang and Gao (2000), which also contains

an extensive list of references on this model.

The most important assumption in the existing methods for the estimation in par-

tially linear models is to assume that it is known a priori which covariates have a linear

form and which do not in the model. This assumption underlies the construction of

the estimators and investigation of their theoretical properties in the existing methods.

However, in applied work, it is rarely known in advance which covariates have linear

effects and which have nonlinear effects.

Recently, Zhang, Cheng and Liu (2010) proposed a novel method for determining

the zero, linear and nonlinear components in partially linear models. Their method

is a two-step regularization method in the smoothing spline ANOVA framework. In

the first step, they obtain an initial consistent estimator for the components in a

nonparametric additive model, and then use the initial estimator as the weights in
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their proposed regularized smoothing spline method in a way similar to the adaptive

Lasso (Zou 2006). They obtained the rate of convergence of their proposed estimator.

They also showed that their method is selection consistent in the special case of tensor

product design. However, they did not prove any selection consistency results for

general partially linear models. Also, in their two-step approach, a total of four penalty

parameters need to be selected, which may be difficult to implement in practice.

We consider the problem of estimation in partially linear models without assuming

a priori which covariates have a linear effect and which have nonlinear effects. We

propose a semiparametric model pursuit method for identifying the covariates with

linear effects and those with nonlinear effects. We embed partially linear models into

a nonparametric additive model. By approximating the nonparametric components

using spline series expansions, we transform the problem of model specification into a

group variable selection problem. We then determine the linear and nonlinear com-

ponents with a penalized approach, using the minimax concave penalty (Zhang 2010)

imposed on the norm of the coefficients in the spline expansion. We show that, un-

der suitable conditions, the proposed approach is model pursuit consistent, meaning

that it can correctly determine which covariates have a linear effect and which do not

with high probability. We allow the possibility that the underlying true model is not

partially linear. Then the proposed approach has the same asymptotic property as

the nonparametric estimator in the nonparametric additive model. We also show that

the estimated coefficients of linear effects are asymptotically normal, with the same

distribution as the estimator assuming the true model were known in advance.

2. Semiparametric regression pursuit via group minimax con-

cave penalization

2.1. Method The semiparametric partially linear model (1) can be embedded into

the nonparametric additive model (Hastie and Tibshirani 1986),

yi = µ+ f1(xi1) + · · ·+ fp(xip) + εi. (2)

Suppose that xij takes values in [a, b] where a < b are finite constants. To ensure

unique identification of the fj’s, we assume that Efj(xij) = 0, 1 ≤ j ≤ p. If some
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of the fj’s are linear, then (2) becomes the partially linear additive model (1). The

problem becomes that of determineing which fj’s have a linear form and which do not.

For this purpose, we decompose fj into a linear part and a nonparametric part

fj(x) = β0j + βjx+ gj(x).

Consider a truncated series expansion for approximating gj,

gnj(x) =
mn∑
k=1

θjkφk(x), (3)

where φ1, . . . , φmn are basis functions and mn → ∞ at certain rate as n → ∞. If

θjk = 0, 1 ≤ k ≤ mn, then fj has the linear form. Therefore, with this formulation, the

problem now is to determine which groups of {θjk, 1 ≤ k ≤ mn} are zero.

Let β = (β1, . . . , βp)
′ and θn = (θ′1n, . . . , θ

′
pn)′, where θjn = (θj1, . . . , θjmn)′. Define

the penalized least squares criterion

L(µ, β, θn;λ, γ) =
1

2n

n∑
i=1

(
yi−µ−

p∑
j=1

xijβj−
p∑
j=1

mn∑
k=1

θjkφk(xij)
)2

+

p∑
j=1

ργ(‖θjn‖Aj
;
√
mnλ),

(4)

where ρ is a penalty function depending on the penalty parameter λ ≥ 0 and a regu-

larization parameter γ. Here without causing confusing, we still use µ to denote the

intercept. The norm ‖θjn‖Aj
= (θ′njAjθnj)

1/2 for a given positive definite matrix Aj.

In theory, any positive definite matrix can be used as Aj. However, it is important to

choose a suitable choice of Aj to facilitate the computation. We will specify Aj in (9)

below.

We use the minimax concave penalty introduced by Zhang (2010). This penalty

function is defined by

ργ(t;λ) = λ

∫ t

0

(1− x/(γλ))+dx, t ≥ 0, (5)

where γ is a parameter that controls the concavity of ρ and λ is the penalty parameter.

Here x+ denotes the nonnegative part of x, that is, x+ = x1{x≥0}. We require λ ≥ 0

and γ > 1. The minimax concave penalty can be easily understood by considering its

derivative

ρ̇γ(t;λ) = λ(1− t/(γλ))+, t ≥ 0. (6)
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It begins by applying the same rate of penalization as the lasso, but continuously relaxes

that penalization until, when t > γλ, the rate of penalization drops to 0. It provides

a continuum of penalties with the `1 penalty at γ = ∞ and the hard-thresholding

penalty as γ → 1+. In particular, it includes the Lasso penalty as a special case at

γ =∞.

The penalty in (4) is a composite of the penalty function ργ(·;λ) and a weighted

`2-norm of θj. The ργ(·;λ) is a penalty for individual variable selection. When it is

applied to a norm of θj, it selects the coefficients in θj as a group. This is desirable,

since the nonlinear components are represented by the coefficients in the θj’s as groups.

We refer to the penalty function in (4) as the group minimax concave penalty, or group

MCP.

The penalized least squares estimator is defined by

(µ̂n, β̂n, θ̂n) = arg min
µ,β,θn

L(µ, β, θn;λ, γ),

subject to the constraints

n∑
i=1

mn∑
k=1

θjkφk(xij) = 0, 1 ≤ j ≤ p. (7)

These centering constraints are sample analogs of the identifying restriction Efj(xij) =

0, 1 ≤ i ≤ n, 1 ≤ j ≤ p.

We convert (7) to an unconstrained optimization problem by centering the response

and the covariate functions. Specifically, we center the responses and covariates and

standardize the covariates by imposing

n∑
i=1

yi = 0,
n∑
i=1

xij = 0 and
n∑
i=1

x2ij = n.

We also center the basis functions. Let

φ̄jk =
1

n

n∑
i=1

φk(xij), ψjk(x) = φk(x)− φ̄jk. (8)

Define

zij =
(
ψj1(xij), . . . , ψjmn(xij)

)′
.

6



So zij consists of the centered basis functions at the ith observation of the jth covari-

ate. Let Z = (Z1, . . . , Zp), where Zj = (z1j, . . . , znj)
′ is the n × mn ‘design’ matrix

corresponding to the jth expansion. Let y = (y1, . . . , yn)′, xj = (x1j, . . . , xnj)
′ and

X = (x1, . . . , xp). We can write

(β̂n, θ̂n) = arg min
β,θn

{L(β, θn;λ, γ) =
1

2n
‖y −Xβ − Zθn‖2 +

p∑
j=1

ργ(‖θnj‖Aj
;
√
mnλ)}.

Here we dropped µ from the arguments of L, since the intercept is zero due to centering.

With the centering, the constrained optimization problem becomes an unconstrained

one.

2.2 Penalized profile least squares To compute (β̂n, θ̂n), we can use a penalized

profile least squares approach. For any given θn, the β̂ that minimizes L necessarily

satisfies

X ′(y −Xβ − Zθn) = 0.

Thus β = (X ′X)−1X ′(y − Zθn). Let Q = I − PX , where PX = X(X ′X)−1X ′ is the

projection matrix onto the column space of X. The profile objective function of θn is

L(θn;λ, γ) =
1

2n
‖Q(y − Zθn)‖2 +

p∑
j=1

ργ(‖θnj‖Aj
;
√
mnλ). (9)

We use Aj = Z ′jQZj/n. This choice of Aj standardizes the covariate matrices associated

with θnj’s and leads to an explicit expression for computation in the group coordinate

algorithm described below. For any given (λ, γ), the penalized profile least squares

estimator of θn is defined by θ̂n = arg minθn L(θn;λ, γ). We compute θ̂n using the

group coordinate descent algorithm described in Section ??

The set of indices of the covariates that are estimated to have the linear form in

the regression model (1) is Ŝ1 ≡ {j : ‖θ̂nj‖ = 0}. Thus we have

ĝnj(x) = 0, j ∈ Ŝ1 and ĝnj(x) =
mn∑
k=1

θ̂jkψjk(x), j 6∈ Ŝ1.

Denote X̂(1) = (xj, j ∈ Ŝ1), Ẑ(2) = (Zj : j 6∈ Ŝ1) and θ̂n(2) = (θ̂′nj, j 6∈ Ŝ1)
′. We have

β̂n = (X ′X)−1X ′(y − Ẑ(2)θ̂n(2)). Then the estimator of the coefficients of the linear
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components is β̂n1 = (β̂j : j ∈ Ŝ1)
′. Let

f̂nj(x) = β̂jx+ ĝnj(x), j 6∈ Ŝ1.

Denote f̂nj(xj) = (f̂nj(x1j), . . . , f̂nj(xnj))
′. The the estimator of the coefficient vector

of the linear components can also be written as

β̂n1 = (X̂ ′(1)X̂(1))
−1X̂ ′(1)(y −

∑
j 6∈Ŝ1

f̂nj(xj)).

2.3 Spline approximation We use polynomial splines to approximate the non-

parametric components gj, 1 ≤ j ≤ p. Let a = t0 < t1 < · · · < tK < tK+1 = b

be a partition of [a, b] into K subintervals IKk = [tk, tk+1), k = 0, . . . , K − 1 and

IKK = [tK , tK+1], where K ≡ Kn = O(nv) with 0 < v < 0.5 is a positive integer

such that max1≤k≤K+1 |tk − tk−1| = O(n−v). Let Sn be the space of polynomial splines

of degree l ≥ 1 consisting of functions s satisfying: (i) the restriction of s to IKk is

a polynomial of degree l for 1 ≤ k ≤ K; (ii) for l ≥ 2 and 0 ≤ l′ ≤ l − 2, s is l′

times continuously differentiable on [a, b] (Schumaker 1981). There exists normalized

B-spline basis functions {φk, 1 ≤ k ≤ mn} for Sn, where mn ≡ Kn + l (Schumaker

1981). We can use these basis functions in the approximation (3).

3. Computation We derive a group coordinate descent algorithm for computing

θ̂n. This algorithm is a natural extension of the standard coordinate descent algorithm

(Fu 1998; Friedman et al. 2007; Wu and Lange 2007) used in optimization problems

with convex penalties such as the Lasso. It has also been used in calculating the

penalized estimates based on concave penalty functions (Breheny and Huang 2010).

The group coordinate descent algorithm optimizes a target function with respect

to a single group at a time, iteratively cycling through all groups until convergence is

reached. This algorithm is particularly suitable for computing θ̂n, since it has a simple

closed form expression for a single-group model as given in (10) below.

We write Aj = R′jRj for an mn ×mn upper triangular matrix Rj via the Cholesky

decomposition. Let bj = Rjθj, ỹ = Qy and Z̃j = QZjR
−1
j . Simple algebra shows that

L(b;λ, γ) =
1

2n
‖ỹ −

p∑
j=1

Z̃jbj‖2 +

p∑
j=1

ργ(‖bj‖;
√
mnλ)
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Note that n−1Z̃ ′jZ̃j = R−1′j (n−1Z ′jQZj)R
−1
j = Imn . Let ỹj = ỹ −

∑p
k 6=j Z̃kbk. Denote

Lj(bj;λ, γ) =
1

2n
‖ỹj − Z̃jbj‖2 + ργ(‖bj‖;

√
mnλ).

Let ηj = Z̃j(Z̃
′
jZ̃j)

−1ỹj = n−1Z̃ ′j ỹ. For γ > 1, it can be verified that the value that

minimizes Lj with respect to bj is

b̃j,GM(λ, γ) = M(ηj;λ, γ) ≡


0, if ‖ηj‖ ≤

√
mnλ,

γ
γ−1(1−

√
mnλ

‖ηj‖ )ηj, if
√
mnλ < ‖ηj‖ ≤ γ

√
mnλ,

ηj, if ‖ηj‖ > γ
√
mnλ.

(10)

In particular, when γ =∞, we have

b̃j,GL =
(

1−
√
mnλ

‖ηj‖

)
+
ηj,

which is the group Lasso estimate for a single-group model (Yuan and Lin 2006).

With the above expressions, the group coordinate descent algorithm can be imple-

mented as follows. Suppose the current values for the group coefficients b̃
(s)
k , k 6= j are

given. We want to minimize L with respect to bj. Define

Lj(bj;λ, γ) =
1

2n
‖ỹ −

∑
k 6=j

Z̃kb̃
(s)
k − Z̃jbj‖

2 + ργ(‖bj‖;
√
mnλ).

Denote ỹj =
∑

k 6=j Z̃kb̃
(s)
k and η̃j = n−1Z̃ ′j(ỹ − ỹj). Let b̃j denote the minimizer of

Lj(bj;
√
mnλ, γ). When γ > 1, we have b̃j = M(η̃j;

√
mnλ, γ), where M is defined in

(10).

For any given (λ, γ), we use (10) to cycle through one component at a time. Let

β̃(0) = (β̃
(0)′
1 , . . . , β̃

(0)′
p )′ be the initial value. The proposed coordinate descent algorithm

is as follows.

Initialize vector of residuals r = y − ỹ, where ỹ =
∑p

j=1 Z̃jb
(0)
j . For s = 0, 1, . . .,

carry out the following calculation until convergence. For j = 1, . . . , p, repeat the

following steps:

(1) Calculate η̃j = n−1Z̃ ′jr + b̃
(s)
j .

(2) Update b̃
(s+1)
j = M(η̃j;λ, γ).
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(3) Update r ← r − Z̃j(b̃(s+1)
j − b̃(s)j ) and j ← j + 1.

The last step ensures that r always holds the current values of the residuals. Although

the objective function is not necessarily convex, it is convex with respect to a single

group when the coefficients of all the other groups are fixed. Thus, Theorem 5.1 of

Tseng (2001) implies that the group coordinate descent algorithm described above

always converges.

4. Theoretical properties We present the results on the model-pursuit con-

sistency, rate of convergence and asymptotic normality of the proposed estimator. In

particular, our model-pursuit consistency result shows that the proposed method can

correctly determine the linear and nonlinear components in the partially linear model

with high probability.

Denote the underlying regression components by f0j and write

f0j(x) = β0jx+ g0j(x).

Suppose the series expansion for approximating g0j is

g0j(x) =
mn∑
j=1

θ0jkφk(x).

Let θ0jn = (θ0j1, . . . , θ0jmn)′. Denote ‖g‖2 = (
∫ b
a
g2(x)dx)1/2 for any square integrable

function g on [a, b]. We have S1 = {j : ‖g0j‖2 = 0} and ‖θ0nj‖ = 0 for j ∈ S1. Let

θ0n = (θ′0n1, . . . , θ
′
0np)

′.

Let q = |S1| be the cardinality of S1, which is the number of linear components in

the regression model. Define

θ̃n = arg min
θn

{ 1

2n
‖Q(y − Zθn)‖2 : θnj = 0, j ∈ S1}. (11)

This is the oracle estimator of θ0n assuming the identity of the linear components were

known. We note that the oracle estimator is not computable since S1 is unknown. We

use it as the benchmark for our proposed estimator.

Analogous to the actual estimates defined at the end of Section 2.2, define the oracle

estimators

g̃nj(x) = 0, j ∈ S1 and g̃nj(x) =
mn∑
k=1

θ̃jkψjk(x), j 6∈ S1.
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Denote X(1) = (xj, j ∈ S1), X(2) = (xj : j ∈ S2) and θ̃n(2) = (θ̃′nj, j ∈ S2)
′. Let

f̃nj(x) = β̃jx+ g̃nj(x), j ∈ S2.

Denote f̃nj(xj) = (f̃nj(x1j), . . . , f̃nj(xnj))
′. The oracle estimator of the coefficients of

the linear components is

β̃n1 = (X ′(1)X(1))
−1X ′(1)(y −

∑
j∈S2

f̃nj(xj)).

Without loss of generality, suppose that S1 = {1, . . . , q}. Write θ̃n = (0′qmn
, θ̃′n(2))

′,

where 0qmn is a (qmn)-dimensional vector of zeros and

θ̃n(2) = (Z ′(2)QZ(2))
−1Z ′(2)Qy. (12)

Define θ∗ = minj∈S1 ‖θ0nj‖, which is the smallest norm of the coefficients in the spline

expansions of the nonlinear components.

Let k be a non-negative integer, and let α ∈ (0, 1] be such that d = k + α > 0.5.

Let G be the class of functions g on [0, 1] whose kth derivative g(k) exists and satisfies

a Lipschitz condition of order α:

|g(k)(s)− g(k)(t)| ≤ C|s− t|α for s, t ∈ [a, b].

Define ‖g‖2 = [
∫ b
a
g2(x)dx]1/2 for any function g, whenever the integral exists.

We make the following assumptions.

(A1) The random variables ε1, . . . , εn are independent and identically distributed

with Eεi = 0 and Var(εi) = σ2. Furthermore, their tail probabilities satisfy P (|εi| >

x) ≤ K exp(−Cx2), i = 1, . . . , n, for all x ≥ 0 and for constants C and K.

(A2) Egj(xj) = 0 and gj ∈ G, j = q + 1, . . . , p.

(A3) The covariate vector X has a continuous density and there exist constants C1

and C2 such that the density function ηj of xj satisfies 0 < C1 ≤ ηj(x) ≤ C2 < ∞ on

[a, b] for every 1 ≤ j ≤ p.

Theorem 1 Suppose that mn = O(n1/(2d+1)), 1/
√
mnγ is less than the smallest eigen-

value of Z ′QZ/n, and
1

m
(2d−1)/2
n (θ∗ − γλ)

+
1

λ
√
n
→ 0.
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Then under (A1)-(A3),

P(θ̂n 6= θ̃n)→ 0.

Consequently,

P(Ŝ1 = S1)→ 1,

P(β̂n1 = β̃n1)→ 1, and P(‖f̂nj − f̃nj‖2 = 0, j ∈ S2)→ 1.

Therefore, under the conditions of Theorem 1, the proposed estimator can correctly

distinguish linear and nonlinear components with high probability. Furthermore, the

proposed estimator has the oracle property in the sense that it is the same as the oracle

estimator assuming the identity of the linear and nonlinear components were known,

except on an event with probability tending to zero.

Theorem 2 Suppose (A1)-(A3) hold. Under model (2), we have
p∑
j=1

‖f̂nj − f0j‖22 ≤ Op

(mn

n

)
+O

( 1

m2d
n

)
+O(mnλ

2).

This theorem gives rate of convergence of the proposed estimator under the non-

parametric additive model (2), which contains the partially linear models as special

cases. In particular, if we assume that each component in (2) is second order differ-

entiable (d = 2) and take mn = O(n1/5) and λ = n−1/2+δ for a small δ > 0, then∑p
j=1 ‖f̂nj − f0j‖22 = Op(n

−4/5), which is the optimal rate of convergence in nonpara-

metric regression.

We now consider the asymptotic distribution of β̂n1. Denote

Hj = {hj = (hjk : k ∈ S1)
′ : Eh2jk(xj) <∞, Ehjk(xj) = 0}, j ∈ S2.

Each element of Hj is a |S1|-vector of square integrable functions with mean zero.

Denote the sumspace

H = {h =
∑
j∈S2

hj : hj ∈ Hj}.

The projection of the centered covariate vector x(1) − E(x(1)) ∈ Rq onto the

sumspace H is defined to be the (h∗1, . . . , h
∗
r)
′ with Eh∗j(xj) = 0, j ≤ Ŝ2 that mini-

mizes

W (h) ≡ E‖x(1) − E(x(1))−
∑
j∈S2

hj(xj)‖2. (13)
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For x(2) = (xj : j ∈ S2), denote

h∗(x(2)) =
∑
j∈S2

h∗j(xj). (14)

Under condition (A3), by Lemma 1 of Stone (1985) and Proposition 2 in Appendix

4 of Bickel, Ritov, Klaassen and Wellner (1993), the sumspace H is closed. Thus

the orthogonal projection h∗ onto H is well defined and unique. Furthermore, each

individual component h∗j is also well defined and unique. In addition to (A1)-(A3),

we also need the following condition for asymptotic normality of the linear component

estimator.

(A4) Let w ≥ 1 be a positive integer. The wth partial derivatives of the joint

density of x(2) = (xj, j ∈ S2) are bounded by a constant and the qth derivative of each

component of ξ(v) = E(x(1)|xj = v), j ∈ S2 is bounded by a constant.

Let A = E[x(1) − E(x(1) − h∗(x(2))]⊗2, where h∗ is defined in (14). Here x⊗2 = xx′

for any column vector x ∈ Rd.

Theorem 3 Suppose that the conditions in Theorem 1 and (A4) are satisfied and that

A is nonsingular. Then,

n1/2(β̂n1 − β(1))→d N(0,Σ),

where β(1) = (βj : j ∈ S1)
′ and Σ = σ2A−1.

Theorem 3 provides sufficient conditions under which the proposed estimator β̂n1

of the linear components in the model is asymptotically normal with same the limit

normal distribution as the oracle estimator β̃n1.

5. Numerical studies

5.1 Simulation studies We use simulation to evaluate the finite sample performance

of the proposed method. Two examples are considered in the simulation. In each of

the simulated models, two sample sizes (n=100, 200) are considered and a total of 100
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replications are conducted. Consider the following six functions defined on [0, 1]:

f1(x) = x, f2(x) = sin(2πx)/(2− sin(2πx)),

f3(x) = 0.1 sin(2πx) + 0.2 cos(2πx) + 0.3 sin2(2πx) + 0.4 cos3(2πx) + 0.5 sin3(2πx),

f4(x) = (3x− 1)2, f5(x) = cos(2πx)/(2− cos(2πx)),

f6(x) = 0.1 cos(2πx) + 0.2 sin(2πx) + 0.3 cos2(2πx) + 0.4 sin3(2πx) + 0.5 cos3(2πx).

In the implementation, we use cubic B-spline with seven basis functions to approximate

each function.

Example 1: Let p = 6. Consider the model

y = 3f1(x1) + 4f1(x2)− 2f1(x3) + 8f2(x4) + 6f3(x5) + 5f4(x6) + ε.

In this model, the first three variables have linear effect and the last three variables

have nonlinear effect. The p covariates are simulated in the following way. First we

simulate w1, · · · , wp and u independently from U [0, 1]. Then xik = (wk + u)/2 for

k = 1, · · · , p. The correlation among predictors is Corr(xij, xik) = 0.5. The error term

ε is chosen from N(0, 1.572) to give a signal to noise ratio 3.

Example 2: Let p = 10. Consider the model

y = 3f1(x1) + 4f1(x2)− f1(x3)− f1(x4) + 2f1(x5)

+5f2(x6) + 4f3(x7) + 5f4(x8) + 5f5(x9) + 4f6(x10) + ε.

In this model, the first 5 components are linear and the remaining 5 are nonlinear.

The covariates are simulated in the same way as in Example 1. The error term ε ∼

N(0, 1.802), which gives a signal to noise ratio 3.

The simulation results are presented in Table 1-3 based on 100 replications. The

columns in Table 1 are: the average number of nonlinear components being selected

(NL), the average model error (ER), the percentage of occasions on which the correct

nonlinear components are included in the selected model (IN%) and the percentage

of occasions on which the exactly nonlinear components are selected (CS%) in the

final model. Enclosed in parentheses are the corresponding standard errors. Table 2

includes the number of times each component being estimated as nonlinear function.
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Several observations can be made from Tables 1 and 2. Table 1 shows that the

proposed method with the group MCP performs better than the proposed method

with the group Lasso in terms of the percentage of occasions on which the correct

nonlinear components are included in the selected model (IN%) and the percentage of

occasions on which the exactly nonlinear components are selected (CS%) in the final

model. For instance, in Example 1, when n = 100, the percentage of correct selection

(CS%) is 82% with the group MCP and is 67% with the group Lasso. Also, when the

sample size increases from 100 to 200, the percentage of including all the nonlinear

components (IN%) and selecting the exactly correct model (CS%) by both methods

are increased. This is not surprising since data with a larger sample size contain more

information about the underlying model. Table 2 shows that the group MCP is more

accurate in distinguishing the linear functions from the nonlinear functions than the

group Lasso. When n = 200, the group MCP can correctly distinguish the linear from

nonlinear components 99% of the times in Example 1 and 78% of the times in Example

2. We have also examined the performance of the proposed method for estimating the

linear and nonlinear components in the simulated models. In general, the proposed

method with the group MCP have smaller mean square errors. Overall, the proposed

method with the group MCP is effective in distinguishing the linear components from

the nonlinear ones in the simulation models.

5.2 Diabetes data example This data set is from a study reported in Willems et al.

(1997). The data consist of 19 variables on 403 subjects from 1046 African Americans

who were interviewed in a study to understand the prevalence of obesity, diabetes, and

other cardiovascular risk factors in central Virginia. Diabetes Mellitus Type II (adult

onset diabetes) is associated with obesity. The 403 subjects were the ones who were

screened for diabetes. Glycosolated hemoglobin > 7.0 is usually taken as a positive

diagnosis of this disease.

We consider Glycosolated hemoglobin as the response variable and the other 15 vari-

ables as the covariates excluding. These 15 variables are: cholesterol (chol), stabilized

glucose (stab.glu), high density lipoprotein (hdl), cholesterol/hdl ratio (ratio), loca-

tion, age, gender, height, height, weight, frame, first systolic blood pressure (bp.1s),

15



first diastolic blood pressure (bp.1d), waist, hip, postprandial time when labs were

drawn (time.ppn). Among these 15 variables, 3 are categorial variables (location, gen-

der, frame), 12 are continuous variables. We are interested in finding which continuous

covariates have nonlinear effects on the response variable. In our study, we only con-

sider the subjects which have all the information, without missing values. Thus the

number of subjects are n = 366, p = 15.

The results are summarized in Tables 4 and 5. The top panel of Table 4 lists the 12

continuous variables being selected by the group MCP and the group Lasso as linear or

nonlinear variables, indicated by 0/1 (1, nonlinear; 0, linear). The top panel of Table

5 shows the number of variables being selected as nonlinear variables and the residual

sum of squares by both the group MCP and the group Lasso methods.

To evaluate the prediction performance of the methods, we randomly select a train-

ing set with 300 subjects from the data to do the estimation and selection and use the

remaining 66 subjects at the test set for prediction. We repeat this process 100 times

and the results are summarized in the bottom panel of Tables 4 and 5. The bottom

panel of Table 4 shows the number of times a variable has a nonlinear effect. The

bottom panel of Table 5 shows the number of variables being selected (NL) as non-

linear components, the residual sum of squares (RSS) and the prediction error (PE),

averaged over 100 replications with standard error in the parentheses. Table 5 shows

that the proposed method with the group MCP performs better than with the group

Lasso in terms of the residual sum of squares and the prediction error.

6. Concluding remarks In this paper, we proposed a semiparametric re-

gression pursuit method for distinguishing linear from nonlinear components in semi-

parametric partially linear models. This approach determines the parametric and non-

parametric components in a semiparametric model adaptively based on the data. Our

proposed method is fundamentally different from the standard semiparametric infer-

ence approach where the parametric and nonparametric components in a model are

pre-specified. We showed that our method has the oracle properties, meaning that it

is the same as the standard semiparametric estimator assuming the model structure
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were known with high probability. Our simulation study indicated that the proposed

method works well in finite sample.

We have only considered the proposed semiparametric regression pursuit method

in the partially linear model with p < n. In many applications such as genomic data

analysis, it is possible to have data with p > n. In this case, our proposed method is

not directly applicable. In the p > n case, assuming the model is sparse in the sense the

number of important covariates is much smaller than n, we can first reduce the model

dimension and then apply the proposed method. For example, we can first use the

adaptive group Lasso method to select the important variables in the nonparametric

additive model (Huang, Horowitz and Wei 2010). We then use the proposed method

in this paper to determine linear and nonlinear components in the model. Under the

conditions given in Huang et al. (2010) and those given in this paper, this two-step

approach has the oracle property even in p > n settings. Further work is needed to

evaluate the finite sample performance and spelled out the technical details of this

two-step approach in p > n settings.

The proposed semiparametric regression pursuit method extends the scope of the

application of penalized methods from variable selection to model specification. We

have focused on the proposed method in the context of semiparametric partially linear

models. This method can be applied in a similar way to other models, such as the

generalized partially linear and partially linear proportional hazards models (Huang

1999). It would be interesting to generalized the results of this paper to these more

complicated models.
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Appendix

Proof of Theorem 1. Since 1/
√
mnγ is less than the smallest eigenvalue of Z ′QZ/n,

L(·;λ, γ) in (9) is a convex function. By the Karush-Kuhn-Tucker conditions, a neces-
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sary and sufficient condition for θ̂n is Z ′jQ
(
y − Zθ̂n

)
= nρ̇(‖θ̂n‖;λ), ‖θ̂j‖2 6= 0,

‖Z ′jQ
(
y − Zθ̂n

)
‖2 ≤ nλ, ‖θ̂nj‖ = 0.

(15)

For j 6∈ S1, if ‖θ̃nj‖ ≥ γλ, then ρ̇(‖θ̃nj‖;λ) = 0. Thus θ̃n satisfies (15) if also ‖Z ′jQ
(
y−

Zθ̃n
)
‖2 ≤ nλ for j ∈ S1. Therefore, θ̂n = θ̃n in the intersection of the events

Ω1(λ) =
{

min
j 6∈S1

‖θ̃nj‖ ≥ γλ
}

and Ω2(λ) =
{

max
j∈S1

‖Z ′jQ(y − Zθ̃n)‖ ≤ nλ
}
. (16)

Let g0j(xj) = (g0j(x1j), . . . , g0j(xnj))
′ and δn =

∑
j 6∈S1

g0j(xj) − Z(2)θn(2). By the

approximation properties of splines to a smooth function, we have

n−1‖δn‖2 = Op((p− q)m−2dn ). (17)

Let C(2) = Z ′(2)QZ(2) and H = Q−QZ(2)(Z
′
(2)QZ(2))

−1Z ′(2)Q. By (12),

θ̃n(2) − θn(2) = C−1(2)Z
′
(2)Q(εn + δn), (18)

and

Z ′jQ(y − Z(2)θ̃n(2)) = Z ′jH(εn + δn). (19)

Recall θ∗ = minj∈S1 ‖θnj‖. If ‖θ̃nj−θnj‖ ≤ θ∗−γλ, then minj 6∈S1 ‖θ̃nj‖ ≥ γλ. Therefore,

1− P(Ω1(λ)) ≤ P(max
j 6∈S1

‖θ̃nj − θnj‖ > θ∗ − γλ).

We also have

1− P(Ω2(λ)) ≤ P(n−1 max
j∈S1

‖(Z ′jH(εn + δn)‖ > λ).

Lemma 1 below shows that, when

(p− q)1/2m−(2d−1)/2n

θ∗ − γλ
→ 0,

P
(

max
j 6∈S1

‖θ̃nj − θnj‖ > θ∗ − γλ
)
≤ (p− q)mn√

n(θ∗ − γλ)
.

and Lemma 2 below shows that, when

1

λm
(2d+1)/2
n

→ 0,
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P(n−1 max
j∈S1

‖+ Z ′jH(εn + δn)‖ > λ) ≤ {log(qmn)}1/2

λ
√
n

.

Note that when mn = n1/(2d+1), we have mnn
−1/2 = m

−(2d−1)/2
n . Therefore, under the

conditions of Theorem 1, we have P(θ̂n 6= θ̃n)→ 0. This completes the proof. 2

Lemma 1 Suppose that
(p− q)1/2

m
(2d−1)/2
n (θ∗ − γλ)

→ 0,

P
(

max
j 6∈S1

‖θ̃nj − θnj‖ > θ∗ − γλ
)
≤ O(1)

(p− q)mn√
n(θ∗ − γλ)

(20)

Proof of Lemma 1. Let Tnj be an mn × (p− q)mn matrix with the form

Tnj = (0mn , . . . , 0mn , Imn , 0mn , . . . , 0mn),

where 0mn is an mn ×mn matrix of zeros and Imn is an mn ×mn identity matrix in

the jth block. By the triangle inequality,

‖θ̃nj − θnj‖2 ≤ ‖TnjC−1(2)Z
′
(2)Qεn‖2 + ‖TnjC−1(2)Z

′
(2)Qδn‖2. (21)

Let C be a generic constant independent of n. For the first term on the right-hand

side, we have

E max
j 6∈S1

‖TnjC−1(2)Z
′
(2)Qεn‖2 ≤ n−1ρ−1n1 E‖Z ′(2)Qεn‖2

= n−1/2ρ−1n1 E‖n−1/2Z ′(2)Qεn‖2

= n−1/2ρ−1n1m
−1/2
n ((p− q)mn)1/2 (22)

= O(1)(p− q)n−1/2mn. (23)

Thus

P
(

max
j 6∈S1

‖TnjC−1(2)Z
′
(2)Qεn‖ ≥ (θ∗ − γ)/2

)
≤ O(1)(p− q)mn√

n(θ∗ − γλ)
.

By (17), the second term

max
j 6∈S1

‖TnjC−1(2)Z
′
(2)Qδn‖2 ≤ ‖nC−1(2)‖2 · ‖n

−1Z ′(2)Z(2)‖1/22 · ‖n−1/2δn‖2

= Op(1)ρ−1n1 ρ
1/2
n2 (p− q)1/2m−dn

= Op(1)(p− q)1/2m−(2d−1)/2n . (24)
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Therefore, when
(p− q)mn√
n(θ∗ − γλ)

→ 0,

(20) holds. This proves the lemma. 2

Lemma 2 Suppose that
1

λm
(2d+1)/2
n

→ 0,

we have

P(n−1 max
j∈S1

‖Z ′jH(εn + δn)‖ > λ) ≤ O(1)
{log{(q ∨ 1)mn}}1/2

λ
√
n

(25)

Proof of Lemma 2. Write

n−1Z ′jH(εn + δn) = n−1Z ′jHnεn + n−1Z ′jHnδn. (26)

By Lemma ??,

E
(

max
j∈S1

‖n−1/2Z ′jHnεn‖2
)
≤ O(1)

{
log((p− |S1|)mn)

}1/2
. (27)

Therefore,

P
(
n−1 max

j∈S1

‖Z ′jHnεn‖2 > λ/2
)
≤ O(1)

{log(qmn)}1/2

λ
√
n

. (28)

By (17), the second term on the right hand side of (26)

n−1 max
j∈S1

‖Z ′jHnδn‖2 ≤ n−1/2 max
j∈S1

‖n−1Z ′jZj‖
1/2
2 · ‖Hn‖2 · ‖δn‖2

= O(1)ρ
1/2
n2 (p− q)1/2m−dn

= O(1)(p− q)1/2m−(2d+1)/2
n . (29)

Therefore, when
1

λm
(2d+1)/2
n

→ 0,

(25) follows from (28) and (29). 2

Proof of Theorem 2. By the definition of θ̂n ≡ (θ̂′n1, . . . , θ̂
′
np)
′,

1

2n
‖Q(y − Zθ̂n)‖22 +

p∑
j=1

ργ‖θ̂nj‖;λ) ≤ 1

2n
‖Q(y − Zθn)‖22 +

p∑
j=1

ργ‖θnj‖;λ). (30)
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Let ηn = Q(y − Zθn) and νn = QZ(θ̂n − θn). Write

Q(y − Zθ̂n) = Q(y − Zθn)−QZ(θ̂n − θn) = ηn − νn.

We have ‖Q(y − Zθ̂n)‖22 = ‖νn‖22 − 2η′nνn + ‖ηn‖2. We can rewrite (30) as

‖νn‖22 − 2η′nνn ≤ 2n

p∑
j=1

(
ργ‖θnj‖;λ)− ργ‖θ̂nj‖;λ)

)
. (31)

Now ∣∣ργ‖θnj‖;λ)− ργ‖θ̂nj‖;λ)
∣∣ ≤ λ‖θnj − θ̂nj‖. (32)

Combining (31) and (32) to get

‖νn‖22 − 2η′nνn ≤ 2nλ
√
p‖θ̂n − θn‖. (33)

Let η∗n = QZ(Z ′QZ)−1Z ′Qηn. By the Cauchy-Schwartz inequality,

2|η′nνn| ≤ 2‖η∗n‖2 · ‖νn‖2 ≤ 2‖η∗n‖22 +
1

2
‖νn‖22. (34)

From (33) and (34), we have

‖νn‖22 ≤ 4‖η∗n‖22 + 4nλ
√
p · ‖θ̂n − θn‖2.

Let cn∗ be the smallest eigenvalue of Z ′QZ/n. By Lemma 1 of Huang, Horowitz and

Wei (2010), cn∗ �p m−1n . Since ‖νn‖22 ≥ ncn∗‖θ̂n − θn‖22 and 2ab ≤ a2 + b2,

ncn∗‖θ̂n − θn‖22 ≤ 4‖η∗n‖22 +
(2nλ

√
p)2

2ncn∗
+

1

2
ncn∗‖θ̂n − θn‖22.

It follows that

‖θ̂n − θn‖22 ≤
8‖η∗n‖22
ncn∗

+
4λ2p

c2n∗
. (35)

Let f0(xi) =
∑p

j=1 f0j(xij). Write

ηn = Q(εi + (µ− ȳ)1 + f(xi)− Zθn).

Since |µ− ȳ|2 = Op(n
−1) and ‖f0j − fnj‖∞ = O(m−dn ), we have

‖η∗n‖22 ≤ 2‖ε∗n‖22 +Op(1) +O(npm−2dn ), (36)
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where ε∗n is the projection of εn = (ε1, . . . , εn)′ to the span of QZ. We have

‖ε∗n‖22 = ‖(Z ′QZ)−1/2Z ′Qεn‖22 ≤ Op(pmn) (37)

Combining (35), (36), and (37), we get

‖θ̂n − θn‖22 ≤ Op

(pmn

ncn∗

)
+Op

( 1

ncn∗

)
+O

(dn2m−2dn

cn∗

)
+

4pλ2

c2n∗
.

Since cn∗ �p m−1n and c∗n �p m−1n , we have

‖θ̂n − θn‖22 ≤ Op

(pm2
n

n

)
+Op

(mn

n

)
+O

( 1

m2d−1
n

)
+O(m2

nλ
2).

Now the result follows from the properties of polynomial splines (Schumaker 2001).

This completes the proof of the theorem. 2

Proof of Theorem 3. Let θ̃n be the oracle estimator defined in (11). Define

g̃nj(x) = 0, j ∈ S1 and g̃nj(x) =
mn∑
k=1

θ̃jkψjk(x), j ∈ S2.

Let

f̃nj(x) = β̃jx+ g̃nj(x), j ∈ Ŝ2.

Denote f̃nj(xj) = (f̃nj(x1j), . . . , f̃nj(xnj))
′. The estimator of the coefficients of the

linear components is

β̃n1 = (X ′(1)X(1))
−1X ′(1)(y −

∑
j∈S2

f̃nj(xj)).

Using the standard techniques in semiparametric models such as those described in

Huang (1996), we can show that

√
n(β̃n1 − β01)→D N(0,Σ).

By Theorem 2, P(β̂n1 = β̃n1) = 1. Therefore, we also have

√
n(β̂n1 − β01)→D N(0,Σ).

This completes the proof of Theorem 3. 2
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n = 100 n = 200

NL ER IN% CS% NL ER IN% CS%

Example 1, Group Lasso 3.46 2.66 100 67 3.10 2.71 100 92

(0.76) (0.66) (0.00) (0.47) (0.39) (0.39) (0.00) (0.27)

Group MCP 3.18 2.28 100 82 3.01 2.43 100 99

(0.39) (0.47) (0.00) (0.39) (0.10) (0.30) (0.00) (0.10)

Example 2, Group Lasso 4.37 6.26 51 17 5.41 3.55 98 62

(2.90) (4.84) (0.50) (0.38) (0.71) (0.59) (0.14) (0.49)

Group MCP 5.25 2.98 76 43 5.22 3.09 98 78

(1.37) (1.22) (0.43) (0.50) (0.54) (0.38) (0.14) (0.42)

Table 1: Simulation results for Examples 1-2. NL, the average number of the nonlinear

components being selected; ER, the average model error; IN%, the percentage of oc-

casions on which the correct nonlinear components are included in the selected model;

CS%, the percentage of occasions on which exactly correct nonlinear components are

selected, averaged over 100 replications. Enclosed in parentheses are the corresponding

standard errors.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

n = 100

Example 1, Group Lasso 21 13 12 100 100 100

Group MCP 9 4 5 100 100 100

n = 200

Group Lasso 3 4 3 100 100 100

Group MCP 1 0 0 100 100 100

n = 100

Example 2, Group Lasso 19 21 14 17 18 54 73 95 69 57

Group MCP 16 13 9 9 11 89 99 100 97 82

n = 200

Group Lasso 9 8 7 9 11 99 100 100 100 98

Group MCP 5 6 6 5 2 99 100 100 100 99

Table 2: Number of times each component being selected as nonlinear component in

the 100 replications by the group Lasso and group MCP methods in Examples 1-2.
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f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

n = 100

Example 1, Group Lasso 0.64 0.66 0.67 7.52 12.23 25.50

(0.93) (0.79) (1.05) (1.48) (6.68) (10.02)

Group MCP 0.54 0.55 0.49 7.51 11.39 25.34

(0.83) (0.70) (0.65) (1.45) (6.72) (9.77)

Oracle 0.11 0.11 0.12 2.22 0.76 10.05

(0.25) (0.17) (0.23) (1.07) (0.46) (2.39)

n = 200

Group Lasso 0.21 0.19 0.20 7.29 12.08 27.24

(0.28) (0.27) (0.26) (1.05) (4.47) (7.04)

Group MCP 0.20 0.16 0.19 7.25 11.35 27.08

(0.28) (0.21) (0.26) (1.03) (4.77) (7.12)

Oracle 0.09 0.08 0.09 1.88 0.50 9.93

(0.07) (0.06) (0.07) (0.65) (0.18) (1.72)

Example 2, Group Lasso 1.22 1.55 1.58 1.40 1.87 3.66 10.24 23.80 3.03 10.09

(1.45) (2.63) (2.08) (2.06) (2.95) (1.43) (7.17) (12.7) (2.76) (5.80)

Group MCP 0.87 1.05 0.90 0.89 1.03 3.55 9.27 22.30 1.96 9.85

(1.02) (1.91) (1.16) (1.51) (1.33) (1.24) (6.88) (10.6) (1.98) (5.08)

Oracle 0.52 0.17 0.27 0.31 0.44 2.57 1.09 13.31 1.28 1.85

(1.00) (0.60) (0.36) (0.63) (0.79) (0.90) (1.54) (13.9) (1.80) (10.45)

n = 200

Group Lasso 0.34 0.36 0.30 0.38 0.39 3.34 8.55 20.09 0.95 9.26

(0.45) (0.40) (0.41) (0.61) (0.56) (0.71) (3.19) (6.61) (0.81) (3.86)

Group MCP 0.30 0.32 0.28 0.31 0.34 3.32 8.52 19.91 0.87 9.19

(0.40) (0.39) (0.39) (0.55) (0.52) (0.70) (3.24) (6.50) (0.81) (3.66)

Oracle 0.23 0.16 0.05 0.16 0.16 0.88 0.36 9.83 0.50 0.33

(0.20) (0.23) (0.02) (0.33) (0.41) (0.30) (0.14) (1.68) (0.17) (0.14)

Table 3: The average mean square error for each component during the 100 replications

by the group Lasso and group MCP methods in Examples 1-2.
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chol stab.glu hdl ratio age height weight bp.1s bp.1d waist hip time.ppn

whole data set

group Lasso 0 1 0 0 0 1 0 0 0 0 0 0

group MCP 1 1 0 1 1 1 0 0 0 0 0 1

training and testing sets

group Lasso 29 66 7 1 0 72 0 0 0 0 0 0

group MCP 89 100 30 99 65 100 9 2 0 0 4 89

Table 4: Diabetes data: Number of each component being selected by the group Lasso

and group MCP methods as nonlinear components. The top panel of Table lists the 12

continuous variables being selected by the group MCP and the group Lasso as linear

or nonlinear variables, indicated by 0 or 1 (0, linear; 1, nonlinear). The bottom panel

shows the number of times a variable has a nonlinear effect in the 100 partitions.

NL RSS PE

whole data

group Lasso 2.00 3.06

group MCP 6.00 2.53

training and testing sets

group Lasso 1.75 3.01 3.44

(0.76) (0.19) (1.02)

group MCP 5.87 2.53 3.27

(0.87) (0.16) (0.89)

Table 5: Diabetes data: The top panel shows that the number of selected nonlinear

components (NL) and the residual sum of squares (RSS) based on the whole data. The

bottom panel shows the NL, the RSS and the prediction error (PE), averaged over 100

replications. Enclosed in parentheses are the corresponding standard errors.
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